A knowledge-based approach to planning with incomplete information and sensing

Ron Petrick Fahiem Bacchus

Department of Computer Science
University of Toronto

Presented at AIPS-02 in Toulouse, France (April 2002)
Motivation

- Planning with incomplete information and sensing:
 - Correct but incomplete knowledge
 - Sensing actions
 - Conditional plans
- Example: software agent in the UNIX domain, high-level agent control, etc.
- Many recent approaches:
 - Model incomplete knowledge with a set of possible worlds
 - Reason about possible worlds to construct plans
Possible worlds

Incomplete knowledge modelled as a set of worlds, each a possible version of how real world configured

- Each world is a first-order model
- Knowing ϕ to be true:
 ϕ is true in every possible world
- Not knowing whether or not ϕ is true:
 worlds in which ϕ is true and ϕ is false
- n atomic formulae \Rightarrow potentially 2^n possible worlds
Planning at possible world level

Must reason at the possible world level to build plans:

- Preconditions: check truth in all possible worlds
- Actions: update each possible world with effects
- Knowledge state: consider changes across worlds
- Objects generate propositions: # possible worlds grows exponentially with # objects
- Compact representations exist
 - Often limited to propositional case (e.g., BDDs)
 - Not always compact
Planning at the knowledge level

Our approach: build plans based on what is known, model actions as updating knowledge

- Formally: utilize modal logic of knowledge
 - K modal operator added to first-order language
 - $K(\phi)$: ϕ is known
 - Semantically understood in terms of PWs
 - $K(\phi)$: ϕ true at all worlds considered possible

- Knowledge level: work directly with formulae
- Tractable reasoning: restrict representation

\Rightarrow Goal: efficient planning without manipulating individual possible worlds
Representing knowledge

Represent agent’s knowledge by a collection of four databases: K_f, K_v, K_w, K_x

- Each database restricted to a particular type of knowledge
- Knowledge is correct but incomplete

 $K(\text{readable}(\text{paper.tex})) \Rightarrow \text{readable}(\text{paper.tex})$

- Contents of databases have fixed translation to formulae in the modal logic of knowledge
- Given set of four databases (DB)

 \Rightarrow translation defines agent’s knowledge state (KB)

- Planning: actions update $\text{DB} \Rightarrow$ update KB
K_f database

Contains positive and negative facts:

- Similar to standard STRIPS database, no CWA
- Example: $\text{readable}(\text{paper.tex}) \in K_f$
 \Rightarrow know paper.tex is readable
- Ground literals (all terms constants): $P(a), \neg Q(c, b)$
- Function mappings of the form:
 $f(c_1, \ldots, c_n) = c_{n+1}$ or $f(c_1, \ldots, c_n) \neq c_{n+1}$
- For $\ell \in K_f$, \mathbf{KB} includes the formula:

 $K(\ell)$
K_w database

Contains formulae every instance of which the agent either knows or knows the negation (know whether):

- Model sensing, universal effects
- Example: $\text{readable}(\text{paper.tex}) \in K_w$
 \Rightarrow sense whether paper.tex is readable or not
 - Plan time: know will come to know readability
 - Run time: definite knowledge
- Entries: conjunctions of atomic formulae
- For $\phi(\vec{x}) \in K_w$, KB includes the formula:

$$\left(\forall \vec{x} \right). K(\phi(\vec{x})) \lor K(\neg \phi(\vec{x}))$$
K_v database

Contains information about function values that will become known at execution time:

- Model sensors that return constants
- Example: $\text{size}(\text{paper.tex}) \in K_v$
 ⇒ sense the size of paper.tex
 - Plan time: size unknown, will come to know
 - Run time: definite knowledge of size
- Entries: any unnested function term, e.g., $f(x, a)$
- For $f(\vec{x}) \in K_v$, KB includes the formula:

$$\left(\forall \vec{x} \right) \left(\exists v \right). K(f(\vec{x}) = v)$$
K_x database

Contains “exclusive or” knowledge of ground literals:

- Know exactly one literal in a set of literals is true
- Example: \(((combo) = c_1 \, | \, (combo) = c_2) \in K_x\)
 \[\Rightarrow\] know one of c_1 or c_2 is the combination of safe
- Entries are of the form $(l_1 | l_2 | \ldots | l_n)$
- For $(l_1 | l_2 | \ldots | l_n) \in K_x$, KB includes the formula:

\[
K \left(\bigvee_{i=1}^{n} l_i \land (\neg l_1 \land \ldots \land \neg l_{i-1} \land \neg l_{i+1} \land \ldots \land \neg l_n) \right)
\]
Knowledge states

Given a set of databases (DB), fixed translation defines agent’s knowledge state (KB)

- Restrictions on databases contents
 \[\Rightarrow \text{restrictions on knowledge that can be modelled} \]

- Cannot model certain types of knowledge
 e.g., general disjunctions: \(K(P(a) \lor Q(b, c)) \)

- Cannot model certain planning problems

- Avoid reasoning directly with individual possible worlds
Querying a knowledge state

Require ability to query a knowledge state \textbf{KB}: check preconditions, goals, conditional effects

- **Primitive query language:**
 - $K(\alpha)$: is α known to be true?
 - $K(\neg \alpha)$: is α known to be false?
 - $K_w(\alpha)$: is α known to be true or known to be false?
 - $K_v(t)$: is the value of t known?
 - Negation of the above queries

- **Inference procedure \textbf{IA}**: sound, incomplete
 \Rightarrow Check databases to determine truth of query
Planning problems

Planning problem: four tuple \(\langle I, G, A, U \rangle \)

- Initial state \(I \): initial contents of databases (initial knowledge state)
- Goal conditions \(G \): conjunction of primitive queries
 \(\Rightarrow \) must be satisfied in every knowledge state that could arise from executing a plan
- \(A \): non-empty set of action specifications
- \(U \): set of domain specific knowledge update rules
Representing actions (A)

Actions modelled as updates to databases:

- **Parameters**: set of variables bound to produce an action instance
- **Preconditions**: conjunctive set of primitive queries, each must evaluate to true to apply action
- **Effects**: conditional effect rules of the form $C \Rightarrow E$
 - Effect preconditions C: set of primitive queries
 - Database updates E: list of add and del operations to any of the databases

\Rightarrow Easy to compute new knowledge states
Representing actions: example

<table>
<thead>
<tr>
<th>Action</th>
<th>Precondition</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{drop(}x\text{)}</td>
<td>(K(\text{holding}(x)))</td>
<td>(\text{del}(K_f, \text{holding}(x))) (\text{add}(K_f, \text{onfloor}(x))) (\text{add}(K_f, \text{dropped}(x))) (\text{del}(K_f, \neg \text{broken}(x))) (K(\text{fragile}(x)) \Rightarrow \text{add}(K_f, \text{broken}(x)))</td>
</tr>
<tr>
<td>\textit{inspect(}y\text{)}</td>
<td></td>
<td>(\text{add}(K_w, \text{broken}(y)))</td>
</tr>
</tbody>
</table>
Representing actions: example...

Initial knowledge

\[K_f \]

- holding(box)
- holding(vase)
- fragile(vase)
Representing actions: example...

Initial knowledge

K_f
- holding(box)
- holding(vase)
- fragile(vase)

K_f
- holding(box)
- fragile(vase)
- onfloor(vase)
- dropped(vase)
- broken(vase)

drop(vase)
Representing actions: example...

Initial knowledge

\[K_f \]
- holding(box)
- holding(vase)
- fragile(vase)

\(K_f \)
- holding(box)
- holding(vase)
- fragile(vase)

\(K_f \)
- holding(vase)
- fragile(vase)
- onfloor(box)
- dropped(box)

\[drop(box) \]

\[drop(vase) \]
Representing actions: example...

Initial knowledge

K_f

- holding(box)
- holding(vase)
- fragile(vase)

K_f

- holding(vase)
- fragile(vase)
- onfloor(vase)
- dropped(vase)
- broken(vase)

K_f

- holding(box)
- fragile(vase)
- onfloor(box)
- dropped(box)

K_w

- broken(box)
PKS: Knowledge-based planning

Initial call: $PlanPKS(I, \emptyset, G)$

$PlanPKS(DB, P, G)$

if \textit{goalsSatisfied}(DB, G) then return P

else Choose

pick(A) : \textit{precondsSatisfied}(A, DB) ;
applyEffects(A, DB, DB') ;
return $PlanPKS(DB'$, (P, A), G)

or

pick(α) : α is a ground instance of an entry in K_w ;
branch(DB, α, DB_1, DB_2) ;
$C := \{PlanPKS(DB_1, \emptyset, G), PlanPKS(DB_2, \emptyset, G)\}$;
return P, C
Domain specific update rules (U)

Knowledge level state invariants:

- Example: come to know an object is fragile if it has been dropped and is broken

$$K(\text{dropped}(x)) \land K(\text{broken}(x)) \Rightarrow \text{add}(K_f, \text{fragile}(x))$$

- Could be included in action specification

- Including all such updates often cumbersome, include rules independent of action specification

- Conditional effect rules of the form $C \Rightarrow E$
 (primitive queries C, database updates E)

- Triggered in any knowledge state where C holds
Consistency rules

Domain independent rules ensure databases remain mutually consistent:

- Both α and $\neg\alpha$ cannot be in K_f
- $f(c_1, \ldots, c_n)$ in K_f must only map to one constant
- ℓ added or deleted from K_f (non-sensing action): remove K_x formulae that mention ℓ or $\neg\ell$
- ℓ added to K_f (conditional branch):
 for each $\phi \in K_x$, where $\phi = (\ell_1| \ldots |\ell_m)$
 - if $\ell \equiv \ell_i$: delete ϕ, add $\neg\ell_j$ to K_f for each $j \neq i$
 - if $\ell \equiv \neg\ell_i$: delete ϕ, add $(\ell_1| \ldots |\ell_{i-1}|\ell_{i+1}| \ldots |\ell_m)$ to K_x
Consistency rules...

Example: \(\phi = (\text{infected}(I_1)|\text{infected}(I_2)) \) in \(K_x \)

- \(\text{infected}(I_2) \) added to \(K_f \) by assumption along conditional branch
 - \(\text{infected}(I_2) \) in \(K_w \) as result of sensing action
 - Delete \(\phi \) from \(K_x \), add \(\neg \text{infected}(I_1) \) to \(K_f \)

- \(\text{infected}(I_2) \) added to \(K_f \) by action causing infection
 - Delete \(\phi \) from \(K_x \)
 - No longer necessarily true that only one of \(\text{infected}(I_1) \) or \(\text{infected}(I_2) \) holds
Plan correctness

- Plan correctness relies on two criteria (Levesque)
 - Plan time: agent must know it will have enough information at run time for the plan to achieve the goals
 - Run time: agent must have sufficient knowledge at every step of the plan to execute it

- PKS satisfies both criteria:
 - Goals satisfied along every conditional branch
 - Plan branches based on sensed K_w formulae
 \Rightarrow resolves to definite knowledge at run time
Planning problems
Bomb in the toilet

- P packages, T toilets
- Bomb in one package, toilets possibly clogged
- $dunk(p, t)$ (disarms p, clogs t), $flush(t)$ (unclogs t)
- Possible world level: $P \times 2^T$ different worlds
- Knowledge level: specific location of bomb, which toilets clogged irrelevant

<table>
<thead>
<tr>
<th>Planner</th>
<th>$(#P, #T)$</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMBP</td>
<td>(10, 6)</td>
<td>116.24</td>
</tr>
<tr>
<td>PKS</td>
<td>(10, 10) → (60, 40) (100, 60)</td>
<td>< 1.00 11.54</td>
</tr>
</tbody>
</table>
Opening a safe

- Safe, fixed set of combinations
- Know one is actual combination of the safe \((K_x)\)
- Goal: \(K(open)\)

<table>
<thead>
<tr>
<th>Action</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dial(x))</td>
<td>(add(K_w, open))</td>
</tr>
<tr>
<td></td>
<td>(del(K_f, \neg open))</td>
</tr>
<tr>
<td></td>
<td>(add(K_f, justDialled = x))</td>
</tr>
<tr>
<td></td>
<td>(K((combo) = x) \Rightarrow add(K_f, open))</td>
</tr>
</tbody>
</table>

- No search control \(\Rightarrow\) undirected plans, blind search
Opening a safe: search control

- Unnecessary to dial: know whether safe open, combo known not to work
- Add preconditions: \(\neg K(open), \neg K((combo) \neq x) \)
- Simple method of controlling search
- Natural plans generated

Ron Petrick and Fahiem Bacchus / A knowledge-based approach to planning with incomplete information and sensing / Presented at AIPS-02 (April 2002) – p.25
Opening a safe: timings

![Graph showing the relationship between combinations and time for opening a safe with and without preconditions. The graph illustrates that with preconditions, the time required increases significantly as the number of combinations increases.]
Opening a safe: run-time variables

- No knowledge of specific combinations
- Initial knowledge: $haveCombo \in K_f$

<table>
<thead>
<tr>
<th>Action</th>
<th>Precondition</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dial(x)$</td>
<td>$K_v(x)$ $\neg K((combo) \neq x)$</td>
<td>$add(K_w, open)$ $K((combo) = x) \Rightarrow add(K_f, open)$</td>
</tr>
<tr>
<td>$readCombo$</td>
<td>$K(haveCombo)$</td>
<td>$add(K_v, (combo))$</td>
</tr>
</tbody>
</table>

- Plan: $readCombo ; dial((combo))$
- $(combo)$ acts as run-time variable
 \Rightarrow value of $(combo)$ only known at run-time
UNIX domain

- Directory structure: $\text{indir}(f, d)$, $(\text{pwd}) = \text{root}$
- File `paper.tex` in directory kr or planning (K_x)
- Goal: $K(\text{indir}(\text{paper.tex}, (\text{pwd})))$

<table>
<thead>
<tr>
<th>Action</th>
<th>Precondition</th>
<th>Effects</th>
</tr>
</thead>
</table>
| $\text{cd-down} (x)$ | $K(\text{directory}(x))$
 $K(\text{indir}(x, (\text{pwd})))$ | $\text{add}(K_f, (\text{pwd}) = x)$ |
| $\text{cd-up} (x)$ | $K(\text{directory}(x))$
 $K(\text{indir}((\text{pwd}), x))$ | $\text{add}(K_f, (\text{pwd}) = x)$ |
| $\text{ls} (x, y)$ | $K(\text{file}(x))$
 $K((\text{pwd}) = y)$ | $\text{add}(K_w, \text{indir}(x, y))$ |
UNIX domain...

\[(\text{pwd}) = \text{root}\]

\[
\begin{align*}
\text{papers} & \quad \text{mail} \\
\text{kr} & \quad \text{aips} \\
\text{paper.tex?} & \quad \text{planning}
\end{align*}
\]

Initial knowledge
UNIX domain...

Initial knowledge

(pwd) = root

cd_down(papers)

cd_down(kr)

ls(paper.tex, kr)

cd_up(papers)

cd_down(kr)

cd_down(aips)

cd_down(planning)

One possible plan

cd_down(papers)

papers mail

kr aips

kr

paper.tex? planning
UNIX domain...

\[(\text{pwd}) = \text{root}\]

- papers
- mail

- kr
- aips
- \text{paper.tex}
- planning

\text{Branch on } \text{indir}(\text{papers, kr})

\begin{align*}
\text{cd_down(papers)} & \quad \text{cd_down(kr)} \\
\text{ls(paper.tex, kr)} & \quad \text{cd_up(papers)} \\
& \quad K^+ \\
& \quad K^- \\
\text{cd_down(kr)} & \quad \text{cd_down(aips)} \\
& \quad \text{cd_down(planning)}
\end{align*}

Initial knowledge

One possible plan
Conclusions

- Planning with incomplete knowledge and sensing
 ⇒ Model problems at knowledge level
- Directly model changes to the agent’s knowledge
- Trade-off: restricted representation versus ability to abstract many assertions about knowledge
- Features: functions, run time variables
- Empirical results: blind search (no search control)
 ⇒ Many problems trivial, approach very promising
- Extensions: additional types of knowledge, improved search control, conversion of actions from world-level effects to knowledge-level effects